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What's wrong with shadows?




What do we want?




Datasets

SBU Dataset (link) - this new dataset contains 4,727 images (4,089 train images
and 638 test images) with pixel based ground truth.

ISTD Dataset (link) - it contains 1870 triplets of shadow, shadow mask and
shadow-free image under 135 different scenarios.


https://www3.cs.stonybrook.edu/~cvl/dataset.html
https://github.com/DeepInsight-PCALab/ST-CGAN

Generative Adversarial Networks

Random Noise

Discriminator

https://medium.com/datadriveninvestor/generative-adversarial-network-gan-using-keras-ce1c05cfdfd3



https://medium.com/datadriveninvestor/generative-adversarial-network-gan-using-keras-ce1c05cfdfd3
https://medium.com/datadriveninvestor/generative-adversarial-network-gan-using-keras-ce1c05cfdfd3

GAN objective

m(}n max V(D,G) = Eaepy,,, @108 D(x)] + Ezcp, (2) log(1 — D(G(2))]

Generative Adversarial Networks



https://arxiv.org/abs/1406.2661

Conditional GAN
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Image-to-lmage Translation with Conditional Adversarial Networks



https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004

Conditional GAN

x|y zly

m(%n mgx V(D,G) = Ewepdata(m) log D(x)] + Ezépz(z)[log(l — D(G(z))]

Image-to-Image Translation with Conditional Adversarial Networks



https://arxiv.org/abs/1611.07004

Shadow Detection

Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network (2018)

Input Image Segmentation Segment Classification Shadow Prior Map (P)



https://arxiv.org/abs/1709.09283
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Fig. 2. Comparison of our qualitative results with the results of other methods. Rows from top to bottom: input images, ground truths, results of
unary-pairwise method, results of stacked-CNN, obtained probanility map of our method, binary mask of shadows based on the probability map of our
method.

Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network (2018)



https://arxiv.org/abs/1709.09283

Shadow detected

What next?




Approach #2 - Shadow Detection & Removing
!

Color[] : CGAN for shadow detection
_ Color ! : CGAN for shadow removal
........... y/ iz N 4 ! @  :concatenation over channels

7§ : skip connection between mirror layers
i : fake pair/triplet for discriminator

G :real pair/triplet for discriminator

Shadow Detection Shadow Removal
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Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal (2017


https://arxiv.org/abs/1712.02478
https://arxiv.org/abs/1712.02478

Image  GT Mask cGAN




Shadow Detection & Removing




Approach #3 - Shadow Generation/Augmentation




Cycle GAN - Datasets

Paired | Unpaired

https://hardikbansal.qgithub.io/Cycle GANBIlog/



https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/

Cycle GAN

Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks (2017)

https://hardikbansal.qithub.io/Cycle GANBIog/
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https://junyanz.github.io/CycleGAN/
https://junyanz.github.io/CycleGAN/
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593
https://hardikbansal.github.io/CycleGANBlog/

Cycle GAN
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Input
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https://junyanz.github.io/CycleGAN/

Cycle GAN



http://www.youtube.com/watch?v=lCR9sT9mbis

CycleGAN  CycleGAN+Ljgentit

|dentity Loss
Ligenting(G; F) =

Eypuua(w) G () = yll] +

Eonpaa(a) [[1F'(2) = [|1].




Cycle GAN




Mask-Shadow GAN

shadow cycle-consistency loss
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(a) Learning from shadow images
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Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data

shadow-free cycle-consistency loss
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(b) Learning from shadow-free images


https://arxiv.org/abs/1903.10683
https://arxiv.org/pdf/1903.10683.pdf

Mask-ShadowGAN




Mask-ShadowGAN




What to improve?

shadow cycle-consistency loss
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Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data

shadow-free cycle-consistency loss
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(b) Learning from shadow-free images


https://arxiv.org/abs/1903.10683
https://arxiv.org/pdf/1903.10683.pdf

U-GAT-IT
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U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-lmage Translation



https://arxiv.org/abs/1907.10830v1
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Summary




Thanks for your time and attention!

Questions?




